Generally speaking, there are two types of outcomes (i.e. response) in statistical analysis: continuous and categorical responses. Linear Models (LM) are one of the most commonly used statistical ...
Keywords: Statistical analyses. Regression models. Post-earthquake ignitions. Data analyses. California. Ground shaking. Generalized linear mixed models. Goodness-of ...
This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are ...
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse ...
This course is compulsory on the MSc in Statistics (Social Statistics) and MSc in Statistics (Social Statistics) (Research). This course is available on the MSc in Data Science, MSc in Health Data ...
Interpretability has drawn increasing attention in machine learning. Partially linear additive models provide an attractive middle ground between the simplicity of generalized linear model and the ...
Ordinary linear regression (OLR) assumes that response variables are continuous. Generalized Linear Models (GLMs) provide an extension to OLR since response variables can be continuous or discrete ...